背投原理
发布时间:2013/9/13 13:16:53
随着大屏幕走进“视界”,“背投”一词也可开始不断地在我们的耳畔响起,那么,背投具体是怎么一回事呢?它的实现原理其实很简单,在设备内部设置一部投影机,发出的图像经透镜放大后投射到屏幕背面,就是背投。正是基于这种原理诞生的背投,由于采用不同的投影机种类,可分为DLP(数字光处理)、LCD(液晶)、LCOS、CRT(阴极射线管)等几种。 目前市面上主要是DLP,还有少量LCOS、LCD,CRT已经退出。
对于将在组建大屏幕墙的单位或部门的相关人员一定都在关注与大屏幕墙相关的各种技术问题,那么,我们现在就向大家简要分析一下这几种技术的应用及它们各自的优缺点!
背投拼接显示墙按照成像技术原理分类
DLP背投拼接:DLP(DigitalLightProcessing)指数字光处理技术,这种技术要先把影像讯号经过数字处理后再投影出来,其投影显示质量很好。与LCD背投的透射式成像不同,DLP为反射方式,其系统核心是TI(德州仪器)公司开发的数字微镜器件—DMD(DigitalMicromirrorDevice)。
DMD是显示数字可视信息的***终环节,它是在CMOS的标准半导体制程上,加上一个可调变反射面的旋转机构形成的器件。通常DMD芯片有约130万个铰接安装的微镜,一个微镜对应一个像素。DLP背投的原理是用一个积分器(Integrator)将光源均匀化,通过一个有色彩三原色的色环(ColorWheel),将光分成R、G、B三色,微镜向光源倾斜时,光反射到镜头上,.相当于光开关的“开”状态。微镜向光源反方向倾斜时,光反射不到镜头上,相当于光开关的“关”状态。其灰度等级由每秒钟光开关,开关次数比来决定。因此采用同步信号的方法,处理数字旋转镜片的***号,将连续光转为灰阶,配合R、G、B三种颜色而将色彩表现出来,***投影成像,便可以产生高品质、高灰度等级的图像。
目前DLP的投影机主要有单片DMD机、双片DMD机和三片DMD机。根据各自不同的特点,有着不同的应用。其中单片式主要应用在便携式投影产品,三片式主要应用于超高亮度投影机,双片式则主要应用于大型拼接显示墙。
DLP数字光处理技术背投影显示单元,虽然亮度、色彩较好,但造价也***,灯泡的寿命不能让人满意,灯泡一般工作大约6000小时时就需要更换,目前业界许多***的公司相继推出了投影机双灯系统,该系统的出现,在一定程度上解决了由于投影机灯泡问题而引起的显示单元无***常显示的问题。DLP数字光处理技术背投影显示单元主要用于指挥自动化、工业控制、生产调度等行业。
目前,大部分的大屏幕拼墙系统主要是指以DLP投影机为主并配以图象处理器组成的高亮度、高分辨率、彩色逼真的电视墙。其功能强大,能显示各种计算机(工作站)、网络信号及各种视频信号,画面能任意漫游、开窗、放大缩小和迭加。且能够长时间的连续运行,其应用领域随着数字化时代的来临越来越广泛,当前应用较多的是监控、集中调度和通信系统,应用的行业主要分布在***110***、***的道路交通指挥、电力调度、***部门的监控、***及***所。
LCOS背投拼接:LCOS为LiquidCrystalonSilicon的缩写,即硅基液晶,是一种全新的数码成像技术。其成像方式类似于三片式的LCD液晶技术,不过采用LCOS技术的投影机其光线不是透过LCD面板,而是采用反射方式形成彩***像。
LCOS采用涂有液晶硅的CMOS集成电路芯片作为反射式LCD的基片,用先进工艺磨平后镀上铝当作反射镜,形成CMOS基板,然后将CMOS基板与含有透明电极之上的玻璃基板相贴合,再注入液晶封装而成。LCOS将控制电路放置于显示装置的后面,可以提高透光率,从而达到更大的光输出和更高的分辨率。
CRT背投拼接:属于背投阵营中的低端产品,也是***为成熟,***也比较低,但CRT背投体积较大,主要是靠荧光粉发光,很难提升亮度,容易使显像管老化,时间长了,画面会变暗,清晰度降低。因此,随着其他技术的逐渐成熟,目前已很少应用。
单就体积来讲,DLP及LCD均比传统CRT背投有***,而且LCD背投清晰度较高;拼接缝较小。但LCD投影机存在着几个致命缺陷,就是对比度低、光栅效应明显、单台投影机的颜色一致性差、长时间使用后色彩衰变快等等;这些缺陷也使得LCD投影技术无法占据背投拼接显示领域的主流位置。目前只有少数工程使用LCD投影机作为拼墙系统的显示设备。
中心议题:
背投显示技术光路原理
解决方案:
LCD背投技术
DLP背投技术
LCOS背投技术
背投显示技术正处于蓬勃发展时期,本文介绍了背投显示技术的基本光路原理,以及当前技术背景下,几种主要背投电视技术的应用和发展前景。并且对笔者所从事的LCOS背投领域做一下重点介绍。
1、背投显示技术
背投(RearProjector)的定义是相对于传统的前投(FrontProjector)而言的。二者的主要区别在于图像光线的来源方式。前投系统中,观察者和投影机位于反射屏幕的同一侧,投影机投射出的光线照射到屏幕后,再经过反射到达观察者;而背投系统中,观察者和投影机位于显示屏幕的两侧,从投影机发出的光线照射到半透明的显示屏幕上,部分透过后形成图像,所以观察者看到的是透射出来的光,其原理如图1:
图1:背投原理图
通常人们提到的多媒体投影机主要是指前投影机,与它们相比背投影的优势在于背投系统中投影机和屏幕是一个整体,用户使用时无需进行光学调整,像使用普通电视机一样简单。此外背投系统中光学投影机封闭在一个箱体内,投射到屏幕上的光线不会受到外界光线影响,因此在较暗或较亮的环境下都可以完好地显示图像。正是基于这些原理产生了背投电视,由于采用的不同的投影机种类,背投技术可以分为CRT(阴极射线管)、LCD(液晶)、LCOS(硅基液晶)、DLP(数字光处理)等几种。到目前为止,CRT背投电视的技术***为成熟,生产规模较大,性价比高,依然是国内背投电视市场的主***品。但CRT背投是靠荧光粉发光,很难提升亮度,容易使显像管老化,时间长了,画面会变暗,清晰度降低。鉴于此,随着其他三种技术的逐渐成熟,市场必将重新分割,谁将占据未来市场的主流呢?下面我将分别介绍一下LCD、DLP、LCOS三种背投电视投影技术。
2、LCD背投技术
LCD(LiquidCrystalDisplay)背投的成像方式为穿透式,成像器件为液晶板,是一种被动式的投影方式。它利用外光源(金属卤素灯或UHP灯),因此只要提高灯泡的功率就可以提升亮度。它利用比较成熟的液晶投影技术,色彩还原性好,亮度和对比度都优于CRT背投。随着技术的不断发展,目前困扰业界的灯泡寿命问题,也将得到较好的解决。目前LCD背投没有成为市场主流的原因主要在于其高成本。此外LCD背投,限于其工作原理上的原因,它的开机预热和关机后散热都需要时间,不能做到CRT背投那样随开随关。
LCD投影机按照液晶板的片数分为三片式和单片式。目前,三片式投影机是液晶板投影机的主要机种,其原理示意图如下:
三片式LCD板投影机原理是光学系统把光源发射的强光通过分光镜形成R、G、B三束光,分别透射过R、G、B三色液晶板;控制信号源经过A/D转换调制后,加到液晶板上,通过控制液晶单元的开启、闭合,从而控制R、G、B三色光路的通断,然后三色光经过合色光路,在合色棱镜中汇聚,***经透镜投射后,在屏幕上形成彩***像。
3、DLP背投技术
DLP(DigitalLightProcessing)指数字光处理技术,这种技术要先把影像讯号经过数字处理后再投影出来,其投影显示质量很好。与LCD背投的透射式成像不同,DLP为反射方式。其系统核心是TI(德州仪器)公司开发的数字微镜器件—DMD(DigitalMicromirrorDevice),DMD是显示数字可视信息的***终环节,它是在CMOS的标准半导体制程上,加上一个可调变反射面的旋转机构形成的器件。通常DMD芯片有约130万个铰接安装的微镜,一个微镜对应一个像素。DLP背投的原理是用一个积分器(Integrator)将光源均匀化,通过一个有色彩三原色的色环(ColorWheel),将光分成R、G、B三色,微镜向光源倾斜时,光反射到镜头上,相当于光开关的“开”状态。微镜向光源反方向倾斜时,光反射不到镜头上,相当于光开关的“关”状态。其灰度等级由每秒钟光开关,开关次数比来决定。因此采用同步信号的方法,处理数字旋转镜片的***号,将连续光转为灰阶,配合R、G、B三种颜色而将色彩表现出来,***投影成像,便可以产生高品质、高灰度等级的图像。
目前DLP的投影机主要有单片DMD机、双片DMD机和三片DMD机。根据各自不同的特点,有着不同的应用。其中单片式主要应用在便携式投影产品,双片式应用于大型拼接显示墙而三片式主要应用于超高亮度投影机。一般DLP背投电视有普通彩电4-5倍的清晰度,而且有着高亮度、高对比度的优势,可达到1000:1的对比度。此外,由于数字技术的采用,使图像灰度等级提高,图像噪声消失,画面质量更稳定。但是,德州仪器公司目前是全球DMD芯片的惟一制造商,造成投影机的供给领域薄弱,核心部件供应量不足,成品率较低,价格昂贵,因此在一定程度上***着这一产品的发展,此外从长远看DLP投影技术在超高分辨率(2000线以上)方面受到制约。
4、LCOS背投技术
LCOS(LiquidCrystalOnSilicon)技术结合了半导体与LCD技术,其光学成像原理与DLP同为反射方式。与前述两种背投技术相比,优势在于高解析度、高亮度的特性,而且结构简单,成本降低潜力大。虽然在目前的背投应用方面,相对于流行的LCD技术及近期热门DLP投影技术而言,LCOS仍不能与其抗衡,短期内在这三大技术中暂时屈居第三,但是LCOS仍是相当被看好的、***潜力的投影技术,随着其光学投影系统在重量、亮度上的不断改善,必将在背投电视市场占据显赫地位。此外,就我国高端背投彩电切入点来说,要建立自己的技术优势,LCOS技术是目前的***。由显示面板来看,在LCD技术领域日、韩占据着相当大的优势,我国***地区也只是占据了部分中、低端市场,DLP技术更是由TI***控制着其核心器件DMD。而LCOS技术尚未成熟,此时开发LCOS,将有机会摆脱在LCD、DLP投影技术上受制于人的情况,因此可以说LCOS是我国在高端彩电技术上取得***地位的机会。目前我国***地区厂商在LCOS技术开发方面相当积极,联电所主导的LCOS联盟已经比较引人注目。HDTV的***应用,必将加快LCOS产业化进程。
LCOS显示面板其中一面以CMOS芯片为基板,无法让光线直接穿过,因此采用穿透式成像方式,因此其背投光学系统和LCD背投影机便产生了区别。通常LCOS光学系统中需要利用偏极化分光镜(PolarizationBeamSplitter:PBS),将入射LCOS面板的光线与反射的光线分开。PBS是由两个45度等腰直角棱镜底边粘合的而成的棱镜,当非线性偏极化光入射PBS时,PBS会反射入射光的S偏振光(垂直入射线平面),并且让P偏振光(平行入射线平面)通过。关于LCOS光学系统技术仍在起步阶段,所以IBM、ColorQuad、Philip、Hologram等多家厂商都开发了不同的LCOS光学引擎架构。但主要可分为单片式和三片式两大类,如下:
1)、单片式
单片式LCOSColorWheel光学引擎示意图如下,R、G、B色环快速旋转将来自光源的***分成循序的红、绿、蓝单色光。这三原色光与驱动程序产生的红、绿、蓝画面同步,便形成分色影像。频率足够快时,由于人眼视觉暂留的特性,观察者便可以看见彩色的投影画面。单片式光学引擎占用空间相对小,仅需一片面板,系统架构比较简单,因此在成本上具竞争优势。然而目前在技术上也面临一些困难,以ColorWheel而言,***经过偏极化后,亮度明显降低,能量仅仅剩余1/3。此外,由于LCOS面板要在红、蓝、绿画面快速的切换下合成影像,对面板反应速度的要求更高。目前类似的技术有:Displaytech的FieldSequentialColor结构、Philip的ScrollingColor-RotatingPri***结构、以及JVC的SpatialColor–Hologram结构。
2)、三片式
三片式LCOS光学引擎是目前市场采取的主要方式。这里以笔者曾经调试的一套三片式LCOS光学引擎为例,介绍一下光路。以UHP灯泡为光源,光线首先经两重复眼透境使光线均一化,然后经过一层PBS棱镜和透镜,接下来经红、蓝、绿三色光的分光光路,再分别将光束投射入到三片LCOS面板,反射的三色影像经过合色系统形成彩色影像,投射到屏幕。此系统中,用到了4个方棱镜、4个PBS棱镜、以及两个复眼透镜、和几个反射镜。由此可见三片式LCOS光学引擎除了需要三片面板外,还需要结合多项的分色、合色光学系统,因此体积较大、成本也较高。但是可以达到较高的光学效率,LCOS投影技术中,其面板的下基板采用CMOS基板,其材质是单晶硅,拥有良好的电子***率,而且单晶硅电路能做得很细,因此容易达到高解析度。此外,LCOS为反射式成像,不会像LCD光学引擎因光线穿透面板而大幅降低光利用率,因此有很高的光利率,可以较少耗电产生较高的亮度。并且具备高画质的特性,因此主要是朝高阶的专业用途发展,目前,三片式光学引擎还有ColorLink采用的ColoRQuard架构、Philips的Pri***架构等。
在此再简单介绍一下LCOS显示驱动的特点。LCOS显示技术中需要一块内建DRAM的图像控制芯片,主要包括脉冲时钟发生器、行驱动电路(移位寄存器和buffer)、列驱动电路(移位寄存器,buffer,锁存器)、D/A转换器和有源象素矩阵几部分。采用有源矩阵结构猪层写入数据,对于每个象素,其工作状态相当于静态驱动,这样对比度较高,几乎没有Cross-talk。而其灰度等级由所加的脉冲宽度决定。每一个象素对应一个开关,并且在驱动芯片中一般占用四层金属,其中下面两层金属用来走线,在上面实现行和列方向的驱动电路连接;上面两层金属用来做光***和反射面电极。视频工作原理如下图:每个象素是由一个MOS管和一个存储电容组成。MOS管的宽长尺寸主要考虑馈通对电路逻辑性能的影响,存储电容(图中Cs)的容值由液晶的漏电常数和液晶自身电容值(图中Clc)决定。
驱动电压方面,采用了“逐场倒相”方式,把交互式电压加到液晶单元,防止在单方向电场作用下,液晶分子极性化,电场取向特性实效。具体操作过程是在***场信号后,翻转数据线的脉冲波形,把正脉冲信号变为负脉冲信号,而保持扫描脉冲信号不变。对液晶及其存储电容进行充电时,为了省电我们在电路设计时选用了线性斜波的充电方式电。
驱动电路系统结构方面,有模拟和数字两种。模拟方式中列方向通过横向的移位寄存器控制与视频相连接,行方向逐行开启,象素矩阵通过垂直的移位寄存器控制与列线相连。数字方式结构中每一个象素使用一个DAC。为了解决DAC无法***在较小的像素内问题,我们可以加入锁存电路从而每行使用一个DAC。
总的来说,CRT、LCD、DLP、LCOS这几种背投电视技术各有优势。考虑到消费能力,CRT在未来几年内仍将占据我国背投市场的主体;LCD就技术成熟度、应用范围方面看,是***有机会首先取代CRT成为主流的技术;DLP是技术新贵,目前由展会展出情况看,声势超过了LCOS(尤其在便携式投影机方面,DLP已经形成一定的产业规模,本文主要阐述在背投电视中的应用,因此不在此详细阐述);而LCOS是***成本优势潜力和图像质量优势的技术,随着人们对显示画面尺寸要求提升,同时追求电视画面更舒适、更清晰,LCOS将具有***的优势。
多年来,DLP背投拼接一直都占据着整个大屏幕拼接市场的领导地位,背投拼接独有的“零拼缝”的地位更是无人能撼动。但是作为极为专业的大屏幕显示设备——背投拼接让很多用户无法走近它,今天投影时代网就背投拼接的拼接方式以及光源方面进行简单的介绍,感兴趣的用户一定要关注一下。
简单来说,背投拼接又可以分为:单机单屏单画面背投显示应用模式、单机单屏多画面背投显示应用模式、多机单屏背投显示应用模式、多机多屏背投显示应用模式、背投影显示墙等几种。
单机单屏画面背投是由一台投影机、一块背投屏和反射系统(可选)以及结构构成的单机单画面投影显示系统,是***简单的背投影系统,将信号源(视频或电脑图文)送入投影机,通过投影机投射到投影屏幕上,广泛应用于商务演示、多媒体教学、会议室等场合;而单机单屏多画面背投显示就是在单机单屏的基础上,配合多画面图象处理器(Multi Vision Processors)构成的多画面投影显示系统。
而多机单屏背投显示则是由多台投影机、一块背投屏(***于散射屏幕)和反射系统(可选)以及结构构成的背投显示系统,加上图象处理器实现单、多画面显示;多机多屏背投显示是指将多个***的背投系统放在一起,各个投影显示画面之间是相互***没有联系的,不使用图象处理器,只要将所有输入信号进行同步后直接输出到每台投影机上就可以了,每个显示画面仅仅能在自己的区域显示,不跨越投影屏边界,对投影屏之间的连接没有技术要求。
背投影显示墙是由多台投影机、多个投影屏及图像控制器构成的大屏幕显示系统,一般用于一个画面的超大屏幕显示或特技显示以及多个画面的多窗口显示(区别于多屏显示)。所有输入信号全部通过图象控制器处理后分配输出到每台投影机上,每个显示画面可以(但不必须)跨越投影屏边界,通常但不是必须,应保证图象单元之间***小的缝隙。通常但不是必须,用背投显示。
DLP背投拼接光源小帖士
大屏幕拼接产品***早起源于1992年,灯源方面经过了金属卤素灯、超******灯、氙灯、LED光源等发展阶段。目前***常用的是超******灯,包括像爱普生(Epson)的UHE灯泡和飞利浦(PHILIPS)的UHP灯泡,其中UHP使用寿命长、亮度衰减小,广泛应用于目前的DLP拼接墙系统。
在这里笔者要重点介绍的是LED光源,LED光源技术是近年来DLP拼接大屏幕******性的突破,相对传统光源,LED光源的优势十分明显,而且目前不少领导型厂商,包括GQY、威创、巨洋、巴可、科视等等都已经推出了采用LED光源的DLP拼接单元。
LED光源具有以下特点:
寿命长。DLP拼接大屏幕常用的UHP灯泡寿命在3000—6000小时之间,一个UHP灯泡数千元的成本,成为了背投拼接墙的***维护耗材,而LED光源有通常有5万小时以上的寿命,使DLP拼接屏幕几乎终生不用更换光源,节约了大量的应用成本。
色域广。LED光源拥有更广的色域,更高的色彩饱和度,更好的色彩表现力,带来更出色的画质,这是继***色彩技术(BrilliantColor)之后,DLP投影在色彩方面的又一个进步。
不用色轮。在采用传统光源的DLP投影机中,色轮是相对容易损坏影响整体寿命的部件,并且产生一定的噪音,采用三原色的LED光源后,DLP投影机就可以不使用色轮这个部件,从而减少噪音、改善整体寿命。
此外,LED光源还有低功耗、低发热等优点,对保持DLP拼接大屏幕的整体亮度对比度一致性也有改善。
分享到: |